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SUMMARY 

Although the finite-element (FE) method has been successful in analysing complex laminar flows, a 
number of difficulties can arise when two-equation turbulence models (e.g. the k--E model) are 
incorporated. This work describes a particular FE discretization of the k--E model and reports its 
performance in recirculating flow. Severe problems encountered in attempts to obtain convergence of 
the numerical scheme are isolated and analysed, and methods by which the problems can be overcome 
are suggested. 

Insight gained in this work has enabled a practical turbulent flow FE code to be constructed which is 
robust and efficient. This code is the subject of a further paper. 

KEY WORDS Finite Element Turbulent HOW 

1. INTRODUCTION 

The finite-element (FE) method has met with considerable success in the solution of 
problems of laminar flow and related heat transfer.'s2 Extension to turbulent flow in complex 
geometry calls for the use of a model of turbulence which can account for the transport of 
turbulence quantities, since the stresses are not in general locally determined. The so-called 
two-equation models are the simplest which are suitable for calculations in complex flow. 
They use the concept of an eddy viscosity which is determined by the solution of two coupled 
transport equations. The most widely used such model is the k--E m0de1,3*~ in which the two 
transported quantities are the turbulence energy, k and its rate of dissipation, E. Hitherto, 
most of the computer codes using this model have been similar to those originally produced 
at Imperial College.' They use hybrid upwind-differencing and solve the resulting equations 
by under-relaxation methods. There is relatively little experience of the solution of the k--E 
equations using the finite-element method.- The few published results in complex geometry 
reflect the difficulty of finite-element discretization and subsequent solution of the highly 
non-linear coupled system. 

A previous paperg has introduced a particularly convenient finite-element discretization of 
the k--E model and reported solutions for simple pipe flows. The purpose of the present 
paper is to report an extension of the above work to encompass more complex recirculating 
flow, Particular emphasis is placed on the analysis of certain difficulties encountered in the 
convergence of the numerical method, and on devising means by which these difficulties can 
be overcome. 

In the following, all variables will be rendered dimensionless with respect to characteristic 
length L and velocity V (the Reynolds number then being given by Re = LVlv where v is 
the dynamic viscosity) and the summation convention is used throughout. 
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2. BASIC EQUATIONS FOR THE k-E MODEL 

The equations governing the steady axisymmetric flow of an incompressible turbulent fluid 
are 

l a  
-- (x2y,) = 0, for x in LR 
x2 a x ,  

where p is the mean pressure, u is the mean velocity and S,, is the Kronecker delta. The 
velocity components ul, u2, are in the axial direction x1 and the radial direction x2,  
respectively. The dimensionless diffusivity of momentum is given by 

(3)  r,, = (1 + pt)/Re 

where F~ is the dimensionless eddy viscosity. 

form: 
The above equations are to be solved in region A2 subject to boundary conditions of the 

u = i for x on ail, (walls, inlet) 
Tl = u2 = 0 for x on 3% (symmetry line) 
T1 = T2 = 0 for x on an, (general outlet) 

where the notation i indicates a prescribed function of u, anl, a&, an3 is a partition of the 
boundary an and, if n is the outward pointing unit normal to aR, the surface traction T is 
defined by 

The system is closed by specification of the eddy viscosity. In the k-e turbulence model, the 
eddy viscosity is given by the relation 

F~ = ReC,k2/s (5 )  
where C, is a constant. The quantities k and E themselves are governed by the transport 
equations 

with the following definitions for the dimensionless diffusivities and sources: 

I rk = ( l + e ) / R e  

r, = ( I + E ) / R e  

Qk = &YRe - & 

Q, = C, C, 1 kS - C, 2~ 2/ k 
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where 

The constants C,, C E , ,  CF2, a k  and o, must be chosen to give the best fit to experimental 
results. In this work the recommended values 049, 1.44, 1.92, 1.0 and 1-3, respectively, 
have been Boundary conditions on the turbulence transport equations are generally of 
the form: 

k = L ,  E = E I  f o r x o n  aR, 

ak a& 
- n, = 0 for x on asL, and aR, ax, n, == ax ,  

However, as pointed out by Hutton and Smith,' it is not convenient to calculate the 
momentum field right up to a solid wall. Furthermore, the k--E model is not valid near a wall 
where viscous effects are important." The 'wall' part of the an, boundary is therefore 
understood to be displaced a small distance into the flow where the fluid can be assumed to 
by fully turbulent. Conditions which match the interior flow to an assumed behaviour near 
the wall can then be imposed on that boundary. Suitable matching conditions for duct flow 
are developed in Reference 9. Following a similar procedure, the usual logarithmic law-of- 
the-wall 

(1 0)  
1 u+--Iny. '+C,  ~ ' 3 3 0  

is applied, but with the velocity parallel to the wall u and distance from the wall y scaled 
according to: 

K 

The constants K and C are given their usual values 0.419 and 5-45 respectively, 7w is the 
wall shear stress and u k  is given by C,!'4k'i2. In a wall equilibrium layer, where production of 
turbulence energy balances dissipation, u k  is equal to JiTwI. The Wall condition (equation 
(10)) is then equivalent to that in Reference 9, where u+, y +  are defined by u = u+ JIT,~, 
y --1 y'/ReJI.r,l. However, the present form is preferred for more general flow with recircula- 
tion because, even though 7, vanishes at a reattachment point, equation (10) still provides a 
sensible boundary condition o n  u. The condition o n  the normal velocity component u is 

where x is tangential distance along the wall and IJ -= T,U'/U,.  Again, this is equivalent to the 
condition derived in Reference 9 in an equilibrium layer. The corresponding matching 
conditions used for the turbulence quantities are: 

Thus, it is assumed that there is a constant-k region near the wall where the length scale is 
given by CY'KY. It should be noted that it is not being claimed that the above matching 
conditions are definitive, but merely that they are a physically sensible choice. Most of the 
conclusions of the present paper are independent of the particular wall functions chosen. 
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3. NUMERICAL TREATMENT 

3.1. Finite-element discretization 

The Galerkin finite-element method is used to discretize the momentum equations in the 
usual way, l1 with the continuity constraint being handled by a penalty-augmented 
Lagrangian-multiplier (PALM) method.' It should be noted that no upwind weighting of the 
convective terms is employed. Eight-noded quadrilateral elements of the serendipity type" 
with quadratic velocity and linear pressure variations are used in the interior of the flow, with 
special elements at the wall. The former are referred to as 'type 2' whereas the special 
elements13 are types 3 and 4. These have cubic velocity variation perpendicular to the wall 
and extra nodal variables consisting of the normal gradients of velocity on the grid edge (see 
Figure 1). 

A similar Galerkin treatment of the k--E transport equations can be used, but this leads to 
great, and probably unnecessary, compli~ation.~ Two finite-element models of the k--E 
turbulence equations are discussed in the present paper, referred to as models I and I1 
respectively according to their treatment of the S variable defined by equation (9). In both 
models, the k and E variables are interpolated using the same basis functions used for the 
velocity components, whereas the quantities ru, T k ,  rE, Qk and Q, are all interpolated using 
serendipity basis functions. In S-model I, S is also interpolated using serendipity basis 
functions. The usual Galerkin method is then applied to equations (6)' (7) and (9) and the 
algebraic relations (3) and (8) (having eliminated F~ using equation (5))  are required to be 
satisfied pointwise at the grid nodes. The advantages of such a formulation are discussed by 
Hutton and Smith.' A disadvantage is that, since equation (9) is solved by the Galerkin 
method using basis functions which are continuous across element interfaces, the S variable 
must be introduced explicitly into the computer code, thus increasing the size and the 
bandwidth of the global solution matrix. The alternative treatment of S (referred to as 
S-model 11) avoids this problem at the cost of lower accuracy on the mesh. It adopts reduced 
interpolation on the S variable, replacing the original quadratic variation over an element by 
a constant value given by averaging the right-hand side of equation (9). Accuracy could be 
maintained by linearly interpolating the S variable at the four Gauss points of the element,14 
but reduced interpolation has other advantages which will emerge in Section 4.2. 

11 

t 

I I 

Figure 1. Wall element (type 3 or 4) 
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The wall matching conditions (10) and (12) are easily incorporated into either scheme 
using the normal velocity gradients a 4  and aui available at the wall nodes of type 3 and 4 
elements. The discrete conditions 

4 =Aha4(ln (CLl"ReAh,lk1"2)+~C) 
411i = Ah(~. ,a~i  - ~ i a q )  

are required to be satisfied at each wall node i, where Ahi is the displacement of the node 
from the wall. The second of conditions (13) is also applied pointwise, but ak/ay = 0 is 
incorporated as a natural boundary condition by leaving k free at the wall nodes. This is 
consistent with an equilibrium wall layer while placing minimum restriction on k where the 
normal gradient is not strictly zero (e.g. at reattachment where the influence of the external 
turbulence field extends close to the wall). 

3.2. Solution of the discrete system 

The above procedure (model I or 11) results in a non-linear system of algebraic equations 
which is solved by Newton-Raphson (NR) iteration, using a direct frontal method to handle 
the linear system at each iteration. It should be noted, however, that k and E are assumed 
strictly positive quantities in the transport equations. If they become negative at any point in 
the iterations, the diffusivities will become negative (equation (5 ) )  and the source terms Qk 
and Q, (equations (8)) will be completely unphysical. The discrete equations are then highly 
unstable and divergence of the NR method ensues. This is prevented by substituting the 
absolute values of the nodal variables of k and E into the discretized equations. This can 
destroy the quadratic properties of the iterative scheme since the NR equations are then 
discontinuous at k = E = 0, but convergence is quadratic once the iterates remain positive. 

The NR method works very well for the momentum equations, an initial guess of zero for 
all nodal variables usually being sufficient to ensure convergence. The k - E  equations are 
much more non-linear however, and thus the method is more sensitive to the initial guess. 
Clearly, if the method is to be of practical use, a guess sufficiently good to ensure 
convergence must be available. For most flows, reasonable estimates for F~ and the 
Prandtl-Kolmorogov length scale 1 are available. Thus, the following method of starting the 
numerical solution is proposed: 

(i) Guess a pt field (a constant, say) and solve the momentum and continuity equations 
decoupled from the turbulence equations. 

(ii) Guess an l distribution (proportional to distance from the wall or a shear layer width, 
say) and solve the (one equation) k-l transport equation decoupled from the dynami- 
cal equations. The single transport equation for k is as equation (6) with F~ = Rek1I2l 
and E = Cwk3/2/1. 

The above two steps result in u, p, k and E fields which are used to initialize the NR 
iterations on the whole k--E system. 

4. PERFORMANCE OF THE k-E FINITE ELEMENT CODE 

4.1. Unidirectional flows 

Solutions for both fully-developed and developing pipe flow using S-model I have already 
been reported in Reference 9. S-model 11, as could be expected, requires rather more 
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elements than S-model I for grid convergence of the k field. In fully developed pipe flow, the 
errors of S-model I1 were typically 7 per cent compared with 2 per cent for S-model I on the 
five element grid in the above Reference. This is not too serious, for the errors introduced by 
averaging the S term are greatest when k and p, are monotonic across the flow (e.g. pipe 
flow). Also, the mean velocity fields predicted by the two models differed by less than $ per 
cent on the above grid, and both were in good agreement with experiment. For both models, 
convergence of the solution method set out above has been found to be reliable. 

4.2. Recirculating flow 

Recirculating flows present a much more stringent test of both numerical method and 
turbulence model than those above, particularly in regard to strong turbulence generation in 
shear layers within the flow and the transport of turbulence away from these areas. The 
particular example chosen as a test case for the present method is a 1 : 2 diameter-ratio 
sudden pipe-expansion. A finite-element grid (consisting of 80 elements) and a sketch of the 
streamline pattern for the flow is shown in Figure 2. Type 3 elements are placed at the 
centre-line (as well as adjacent to the wall) so that exact symmetry can be imposed, and type 
4 elements are used near the re-entrant and concave corners (A and B, respectively) to 
ensure compatibility of the basis functions. The variables are non-dimensionalized with 
respect to the downstream pipe diameter and bulk velocity, with Reynolds number taken to 
be 3 x  lo4. 

The inlet boundary conditions were chosen as follows: 

u1 = C U ( ~  - 4x2)1’7, U2 = 0 

k = k o ,  E = E ~  

where the constant (Y in the Prandtl (1/7) law was chosen to give the correct bulk velocity. 
The constant inlet values of k and E were chosen for simplicity, the levels ko=0.16 and 
E~ = 0.23 being representative of the turbulence energy and shear stress in the annular inlet 
of the BNL jet-in-pool experiment.” 

.0.02 

0 4 Xl 

Figure 2. Eighty element grid for the sudden pipe-expansion 
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A solution for the velocity field with Ft/Re held constant at 1/70 was easily obtained using 
NR iteration, the PALM penalty parameter being set to unity for optimum continuity 
satisfaction. However, attempts to obtain solutions for the turbulence fields with S-model I 
proved unsuccessful, the procedure described at the end of Section 3 invariably leading to 
divergence. Furthermore, even if a complete upwind finite-difference solution for the flow 
(interpolated onto the finite-element mesh) was used as initial guess, the NR method was still 
found to diverge strongly. 

In order to investigate this phenomenon, a series of calculations was carried out (using NR 
iteration as described earlier) solving the FE k and E transport equations decoupled from the 
velocity field, with different specifications of the source term S.  The specified velocity field 
was interpolated from a finite-difference (FD) solution on a uniform mesh of 30 x 30 nodes, 
and the S field was calculated from 

s = (1 -A)&,+ AS= (14) 

Here, S;, was calculated from the FD velocity field using a centred-difference appoximation 
of equation (9) on the FD mesh, and interpolating to the FE mesh. On the FD nodes around 
the re-entrant corner however, there are insufficient nodes for a centred-difference approxi- 
mation, and a quadratic extrapolation from the interior was used instead. Since the velocity 
gradients near the corner are very high, this will underestimate S in that region. S ,  is the 
result of a Galerkin FE solution of equation (9) using the interpolated FD velocity field in 
the right-hand side. Thus, as A is varied from zero to unity in equation (14), S varies from 
the modified FD approximation to the full FE approximation on the same velocity field. The 

E 
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Node 2625 24 23 2221 20 19 18 --- 
X 2 0 4  0 3  0.2 0 1  0 

Figure 3. FE solution of k--E decoupled from the velocity field: variation of E across the inlet (x, = 0.08) 
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largest differences between the two occur near the re-entrant corner for the reasons given 
above. The ratio S A S b  is of order 30 at the corner. The results of these calculations are 
illustrated by the profiles of E just downstream of the expansion face shown in Figure 3.  As A 
is increased the peak value of E increases drastically in response to the increase of S near the 
corner. The mesh is too coarse to model such variation, and the overshoot on node 23 
eventually takes the value near zero. No solution is possible for A>O*85; the iterative 
scheme oscillates (or diverges if iterates arc allowed to go negative). 

It is clear from this that the discrete system of equations resulting from S-model 1 has no 
real solution on  the given mesh. The localized peak of S near the re-entrant corner leads to a 
peak in E (and k )  which, if it cannot be resolved by the mesh, tends to overshoot negative. 
This destroys the ellipticity of the problem, which then may have no solution. 

Overshoot, such as that described above, can be reduced by damping the k and E fields 
with artificial diffusion. An alternative is to limit the size of the peak in S t o  a level where the 

- FD ( 30x 30 nodes) 
FE (80  elt ) 

I \ q 
0 5  1 0  
1 

Figure 4. Cross-stream velocity profiles in the sudden pipe-expansion 
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mesh can resolve the subsequent k and E variations. The latter is, in fact, achieved by the 
reduced interpolation of S-model I1 where, although the total integrated S is unchanged 
over any element compared with model I, the local peaks are smoothed by the averaging 
process. 

The discrete system generated by S-model I1 does indeed have a solution for the present 
flow, shown in Figures 4 and 5 .  Here, profiles of ul ,  u2, k and E across the pipe are 
compared with results from the 30x30 node upwind FD code. It should be noted that 
interpolated values of the variables from the FD solution have been used as inlet and 'wall' 
boundary conditions on the FE mesh. Thus, the particular form of wall functions used cannot 
affect the comparison of results. It can be seen that the velocity profiles from the FE and FD 
codes are in close agreement. Also, the k and E fields agree quite closely over most of the 
expansion, with the important exception of the region just downstream of the re-entrant 

- FD (30  x 30 nodes ) 
--x--FE (80 el t . )  

1.5  2 Z.! 
-E 4.0 (b) 

Figure 5. Cross-stream turbulence profiles in the sudden pipe-expansion 
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k - FD (30x30 nodes)  
- - X - -  FE (80 elt .)  

- FD (3Ox30nodes)  
--x- - FE (140 e l t . )  

I :  

- F D  (30x30 nodes) 
- - X - -  FE (80  e l t .  1 

1 5  

X1 1.0 2.0 3.0 

(a 1 

- FD ( 3 0  x 30 nodes 1 
--x-- FE (140 elt.)  

Figure 7. Down-stream profiles of E in the sudden pipe-expansion, x2 = 0.25 
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Although model I1 does have discrete solutions on the grids used, convergence of the NR 
procedure is still very sensitive to the initial guess. For the calculations reported above, the 
FD results were used to initialize the procedure. Attempts to use the method described in 
Section 3.2 invariably led to divergence, and this is clearly unacceptable performance. 

5 .  DISCUSSION 

5.1. General considerations 

The performance of the finite-element k--E code in the calculation of recirculating flow 
appears most depressing. However there is much to learn from the problems encountered, 
and this section is consequently the most important part of the paper. Two major difficulties 
were isolated in the previous section. The first is the occurrence of high localized turbulence 
levels near the re-entrant corner which can result in the discretized equations having no real 
solution on a particular mesh. Although reduced interpolation of the S variable does 
produce a soluble system, it is not clear what level of refinement is necessary to resolve these 
peaks in k and E (or indeed whether mesh convergence is attainable). The second difficulty is 
the extreme numerical instability of the discretized k--E turbulence model. Problems of this 
type are often dealt with by using under-relaxed iterative techniques which must often be 
‘tuned’ to a particular flow, but these techniques are unsatisfactory for use in a code designed 
for practical flow calculations. 

Attention is being concentrated on the above problems (dealt with under separate 
headings below) because they are by no means confined to the present code and discretiza- 
tion method. Cliffel“ found that solutions to a k--E finite-element code were unobtainable 
without the incorporation of artificial diffusivity near a re-entrant corner, and Larock and 
Schamber6 and Tongs have described serious convergence difficulties. Insight into the causes 
(and possible cures) of these problems should therefore be of general relevance. 

5.2. Behaviour of the turbulence quantities near the re-entrant comer 

Experimental measurements of normal stresses near a step edge”-19 indicate that k rises 
monotonically along the shear layer from the step, reaching a maximum at the value of x1 
which roughly corresponds to reattachment. Such behaviour can be seen in the FE predicted 
profile for a short distance downstream of the initial peak (see Figure 6(b)). However, there 
appears to be no experimental evidence for the peak itself, and the numerical results must be 
judged to be anomalous. Although the magnitudes of the peaks are very different, this 
anomalous behaviour is predicted by both FE and F D  codes, and it is therefore likely that 
the cause is in the physical modelling. 

Boundary conditions are obviously of crucial importance near a re-entrant corner, and it is 
by no means clear what types of wall functions are appropriate there. However, there is 
strong evidence that large localized peaks are a feature of the k--F model in this flow region. 
It is shown in Appendix I that, in the initial part of the shear layer behind the re-entrant 
corner, diffusion of the turbulence quantities is small compared with the source terms. If 
diffusion is neglected, the analytic k--E equations can be shown to have solutions which grow 
exponentially along a streamline. Assuming that S and U (the fluid speed) are locally 
constant along the streamline, Appendix I1 shows that the exponent is given by (Cc2 - C, 
(t/U)J[C,S(C,, - 1)(CE2- l)] where t is distance measured along the streamline. If the 
recommended constants are adopted, this exponent is positive. Further, as has been pointed 
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out by Cliffe,16 near a re-entrant corner S is very large and U will be small. The quantities k 
and E can thus be expected to grow rapidly. Appendix I indicates that diffusion of k will be 
of the same magnitude as production when the level of k in the shear layer is of order 2, and 
then the conclusions above will no longer be valid. This value is very close to the height 
(k -=  1.8) of the anomalous peak in k predicted on the 140 element grid. 

As observed above, the peaks in the turbulence quantities are much higher in the FE 
predictions than those obtained with an upwind-differenced FD code. The details of the 
source calculation near the boundary could well be responsible for some of the difference, 
but numerical diffusion, which is an inherent feature of such F D  codes, can be expected to 
damp out large localized peaks. In Galerkin FE codes such features are more obvious (and 
numerically troublesome) because the artificial damping is not present. 

Further investigation of this subject is needed. However, the results presented in Section 4 
do demonstrate that the anomalies are highly localized and there is n o  appreciable effect on 
the main flow. Thus, the predictions of codes using the k--E model can still be useful outside 
the areas of flow showing these anomalous peaks in k and E .  

5.3. The numerical stability of the discretized k--E equations 

The solution procedure for the turbulent FE code described in Section 3 uses Newton- 
Raphson iteration as its basic non-linear solver. Provided that the initial guess is ‘close 
enough’, the NR method converges very rapidly, reducing the residual errors quadratically at 
each iteration. However, rapid convergence does entail large changes in the variables in the 
initial iterations, and this can take complicated non-linear equations well beyond their range 
of validity (e.g. k, E <0 for the k, E transport equations). A further hazard is that the 
discretized equations may have very different types of solutions (if they exist at all) from the 
original non-linear differential equations. This point is graphically illustrated by the example 
given in Appendix 111. It is shown there that a simple non-linear diffusion equation having a 
unique analytic solution, when discretized according to the methods described in Section 3,  
has multiple discrete solutions. Among these is a very good approximation to the analytic 
solution (given a suitable grid), but nearby spurious solutions make it very unlikely that NR 
iteration, starting from any guess other than the required solution itself, will converge to the 
correct result. This behaviour is not confined to the particular discretization method 
employed in the present work. Indeed a centre-diff erenced replacement (given in Appendix 
111) of the same differential equation also has multiple solutions. The example described in 
the Appendix is very simple. In two dimensions and with the much more complicated k--E 
system, one would expect similar problems to manifest themselves as a very small radius of 
convergence for the NR procedure. This was indeed found in the attempts to calculate 
recirculating flow described in Section 4. 

It is clear from these considerations, that, for the NR method to converge reliably from 
poor guesses, the discretized equation system must be well behaved over a large range of the 
variables, not just in the vicinity of the required solution. Meyer2’ has examined the solution 
of a finite-difference replacement of the Dirichlet problem: 

with u(0) = u(1) = 0. Under certain continuity conditions and the requirements 

(i) there is a constant mrn > 0 such that 0 < .rrm < ~ ( u ,  x) uniformly in u and x 
(ii) for fixed x, 4 is monotone decreasing with respect to u 
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Meyer showed that a solution of the discrete equations exists and is unique. These are the 
properties one would ideally like for the discrete k--E system. So far as the author is aware, 
there is little equivalent work on finite-element discretizations of non-linear differential 
equations. However, the basic requirements can be modelled (and their efficacy confirmed) 
on simple single element discretizations of the type illustrated in Appendix 111. If convection 
is neglected, and the transport equations (6) and (7) are considered separately, it is clear that 
neither of the basic requirements (i) (uniformly positive diffusivity) nor (ii) (monotone 
decreasing source term) is satisfied. The diffusivities are negative for E < O  and the source 
terms are increasing with k.  A reformulation of the turbulence equations to satisfy the above 
basic stability properties would clearly have a much better chance of reliable convergence 
using a fast NR iteration method. Such a reformulation is described in a further paper.21 
which also confirms a vastly improved numerical performance for the resulting turbulent flow 
code over that reported above. 

6. CONCLUSIONS 

The performance of the Galerkin FE code described is satisfactory in the simulation of 
unidirectional flow using the k--E turbulence model. However, severe difficulties are encoun- 
tered with more complex recirculating flow. The underlying causes of these difficulties are as 
follows: 

(i) Extreme local variations of the turbulence quantities are predicted near re-entrant 
corners by the k--E model. In Galerkin FE codes, the resulting overshoots in the 
numerical approximation can interact with the k--E model so that no solution exists on 
a given mesh. In current finite-difference codes, because of the necessity of upwind 
differencing, one would expect such variation to be damped out by 'false' diffusion. 

(ii) The mathematical form of the k--E transport equations leads to discretized systems 
which are highly unstable with respect to fast converging iterative solution methods (in 
particular Newton-Raphson). 

Successful analysis of these problems has suggested better formulations of the turbulence 
model equations yielding discretized forms which are numerically stable, and which are 
therefore suitable for use in practical turbulent flow codes. 
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APPENDIX I. ENERGY BALANCE IN THE MIXING LAYER 

The flow just downstream of a re-entrant corner can be considered as a plane mixing layer. 
Suppose the width of the layer is 6, separating stagnant fluid from a core of velocity uo, and 
that inside the layer there is a peak of turbulence energy of magnitude k,,,, with k = k, 
outside. Using centre-diff erence approximations, we can now assess the relative magnitudes 
of the diffsuion and source terms in the transport equations: 

NEAR A RE-ENTRANT CORNER 

Ft 4 Pk=Production of k = &  a" '--- 
Re 6,) Re S2 
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Thus the ratio DJP, - 8( k ,  - k,)/u,u% 

to production of k is initially G0.08. The ratio is of order unity when (km- ko)-  2. 
In the present flow, u, - 4  and (k,- k,) s ko = 0.16 at inlet, so the ratio of diffusion of k 

APPENDIX 11: THE DIFFUSIONLESS k - E  EQUATIONS 

An interesting analytic solution of the k--E equations is available if diffusion is ignored, and S 
and 1u1= U are assumed constant along a streamline. Then, if t is distance measured along 
the streamline, the transport equations may be written: 

Introducing f = E /  k, we can write 

dk k2 
dt E 

U - = C , - s - &  

U-=cC,(CE,- l )S-(CE~-l)f2 df 
dt 

which may be integrated to give 

where t' = (t/ U),/[C,S(C,, - 1)(CE2 - l)] and to is a constant of integration. This expression 
may be substituted into equations (15) and (16) to derive expressions for k and E .  In 

particular, consider the limit of large t', when f -+ ~ ~ ~ E 7 ~ , " ] ,  a constant. Then k and 
E behave asymptotically like 

with the recommended values of the constants. Thus, as t' becomes large, both k and E tend 
exponentially to infinity. 

APPENDIX 111: DISCRETIZATION OF A NON-LINEAR DIFFUSION EQUATION 

Consider the one-dimensional non-linear diffusion equation 

with boundary conditions 
&=a, x = o  

E = &  X = l  
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The unique analytic solution is simply: 

Consider discretizing equation (18) using the method introduced for the k,  E 

equations, writing 

q r E ) = 0  dx 

with 
1 ==- 
E 

ransport 

(19) 

and interpolating E and T using quadratic one-dimensional versions Wi(x) of type 2 element 
basis functions. The Galerkin method is applied to equation (19), and (20) is required to be 
satisfied at the nodes. This procedure leads to  the discrete equations: 

for the interior nodes and E~ =a, ei = @ at the two boundary nodes respectively (where E~ 

denotes the value of E at the jth node). For the trivial case of a single element 6.e. 1 5  j 5 3 )  
there is a single unknown E~ given by: 

E ~ =  b*,/(b2+2a@/3) 

+ Analytic soln. 

--- Linear guess 

A Analytic guess 

m Linear guess with 
& i  held non-negative 

0.5 1.0 x 

5 10 quadratic elements 

0 

Figure 8. Multiple finite-element solutions obtained by Newton-Raphson 
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where 

R. M. SMITH 

Thus, there are two real solutions, one positive and one negative if a, 0 > 0. The situation for 
more than one element is illustrated in Figure 8. Values a = 200, P = 1 are assumed, and the 
interval [0, 13 is divided into five quadratic elements (i.e. 15 j < 11). If the analytic solution is 
used as initial guess in the Newton-Raphson procedure, the analytic solution is returned to 
good accuracy. However, when a linear guess is used, various discrete solutions can be 
obtained according to the details of the iterative procedure. Thus although the mesh is easily 
capable of resolving the analytic solution, nearby spurious solutions exist which make it very 
unlikely that an iterative procedure of the Newton-Raphson type will converge to the 
required result. Such behaviour is not confined to this particular discretization. For example, 
the central difference replacement of equation (18) 

also has multiple solutions. 
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